Observation of the predissociated, quasilinear B(1A') state of CHF by optical-optical double resonance.

نویسندگان

  • Chong Tao
  • Scott A Reid
  • Timothy W Schmidt
  • Scott H Kable
چکیده

We report the first observation of the predissociative B state of a halocarbene molecule. Rovibronic energy levels were measured in the B(1A') state of CHF by fluorescence dip detected optical-optical double resonance spectroscopy via the A state. The origin was found to lie 30 817.4 cm-1 above the zero point level of the X state. Rotational transitions within six purely bending states, and states involving one or two quanta of CF-stretch were observed, including the vibrational angular momentum components. Interpretation of the spectrum, with support of ab initio calculations, shows that CHF is quasilinear in the B state with a small (-200 cm-1) barrier to linearity which lies below the zero-point level. The rotational constant, B=1.04 to 1.09 cm-1, depending on vibrational state, again in good agreement with theory. All observed B state levels were predissociative, as evidenced by Lorentzian line broadening. Linewidths varied with initial state from 0.7-10.8 cm-1, corresponding to excited state lifetimes of 0.5-8 ps.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Millimeter-wave optical double resonance schemes for rapid assignment of perturbed spectra, with applications

Optical Double Resonance Schemes for Rapid Assignment of Perturbed Spectra, with Applications to the [~ over C] [superscript 1]B[subscript 2] State of SO[subscript 2]. " The Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Plea...

متن کامل

Millimeter-wave optical double resonance schemes for rapid assignment of perturbed spectra, with applications to the C̃ (1)B(2) state of SO2.

Millimeter-wave detected, millimeter-wave optical double resonance (mmODR) spectroscopy is a powerful tool for the analysis of dense, complicated regions in the optical spectra of small molecules. The availability of cavity-free microwave and millimeter wave spectrometers with frequency-agile generation and detection of radiation (required for chirped-pulse Fourier-transform spectroscopy) opens...

متن کامل

Analytical Study of Optical Bi-Stability of a Single-Bus Resonator Based on InGaAs Micro-Ring Array

In this paper, for the first time to our knowledge, we investigate the optical bi-stability in a compact parallel array of micro- ring resonators with 5μm radius, induced by optical nonlinearity. Due to the nature of perfect light confinement, resonance and accumulation process in a ring resonator, optical nonlinear effects, even at small optical power of a few milliwatts in this structure are ...

متن کامل

The effect of cells' radius on optical filter output spectrum based on photonic crystals

In this article, the effect of cells' radius on the behavior of wavelength switching optical filter andthe effect of the radius of the optical filters' key characteristics such as wavelength resonance onan optical filter based on photonic crystals, have been investigated. Currently, the most commonapplied mechanism for designing optical filter based on photonic crystals is using twomechanisms s...

متن کامل

Spectroscopy and dynamics of the predissociated, quasi-linear S2 state of chlorocarbene.

In this work, we report on the spectroscopy and dynamics of the quasi-linear S(2) state of chlorocarbene, CHCl, and its deuterated isotopologue using optical-optical double resonance (OODR) spectroscopy through selected rovibronic levels of the S(1) state. This study, which represents the first observation of the S(2) state in CHCl, builds upon our recent examination of the corresponding state ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 126 5  شماره 

صفحات  -

تاریخ انتشار 2007